Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2200541

ABSTRACT

Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf phenolic compounds. The resultant extracts were evaluated for their total phenol content (TPC), phenolic profile and antioxidant activity and compared with those of water and ethanol:water 70% v/v extracts. HAE was proven to be the most efficient method for the recovery of olive leaf phenolic compounds. The highest TPC (55.12 ± 1.08 mg GAE/g d.w.) was found in CCA extracts after HAE at 60 °C and 12,000 rpm, and the maximum antioxidant activity (3.32 ± 0.39 g d.w./g DPPH) was found in CGL extracts after UAE at 60 °C for 30 min. The TPCs of ethanol extracts were found to be higher than those of NADES extracts in most cases. The predominant phenolic compounds in the extracts were oleuropein, hydrohytyrosol and rutin.


Subject(s)
Deep Eutectic Solvents , Olea , Solvents/chemistry , Olea/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Phenols/chemistry , Water/chemistry , Ethanol/chemistry , Phenol/analysis , Plant Leaves/chemistry
2.
Periodica Polytechnica Chemical Engineering ; 66(4):660-674, 2022.
Article in English | Web of Science | ID: covidwho-2071062

ABSTRACT

Olive leaves (OLs) are well known for being rich in oleuropein, their main bioactive molecule which has recently been attracting great interest from the scientific community due to its antiviral properties, including Covid-19 disease. Furthermore, the high-temperature/ short-time drying process has found applications for various plants and food processing, which might be also implemented for the drying of OLs. This study focuses on: 1. the mathematical modeling of thin-layer high-temperature-drying (HTD) kinetic of olive (var. Chemlal and Oleaster) leaves, and 2. the determination of HTD effect on some physicochemical properties (oleuropein, chlorophylls, and CIELab color parameters) of the dried olive leaves (DOLs). For this, four drying temperatures (100, 120, 140, and 160 degrees C) were applied. For comparison purposes, low-temperature DOL samples were also prepared. The obtained data have shown that among the tens tested mathematical models, the Midilli et al. model describes more correctly experimental data for all drying temperatures and for both olive leaf varieties (R-2 = 0.9960, SEE = 0.0085, RMSE = 0.0165 and chi(2) = 0.0006). Moreover, the results show that the HTD at 120 and 160 degrees C does not differ from freeze-drying in terms of oleuropein retention (p < 0.05), highlighting the technological interest in the high-temperature/short-time drying process. Considering the biological value of oleuropein, in particular its antiviral activity, the study deserves further investigation in order to elucidate certain questions such as the storability of DOLs, and their valorization as fortification ingredient in food and pharmaceutical formulations, evaluation in vitro of their biological activities, etc.

3.
Front Pharmacol ; 13: 879118, 2022.
Article in English | MEDLINE | ID: covidwho-1822401

ABSTRACT

Beginning from December 2019, widespread COVID-19 has caused huge financial misfortunes and exceptional wellbeing emergencies across the globe. Discovering an effective and safe drug candidate for the treatment of COVID-19 and its associated symptoms became an urgent global demand, especially due to restricted information that has been discharged with respect to vaccine efficacy and safety in humans. Reviewing the recent research, olive leaves were selected as a potential co-therapy supplement for the treatment and improvement of clinical manifestations in COVID-19 patients. Olive leaves were reported to be rich in phenolic compounds such as oleuropein, hydroxytyrosol, verbascoside, apigenin-7-O-glucoside, and luteolin-7-O-glucoside and also triterpenoids such as maslinic, ursolic, and oleanolic acids that have been reported as anti-SARS-CoV-2 metabolites in recent computational and in vitro studies. In addition, olive leaf extract was previously reported in several in vivo studies for its anti-inflammatory, analgesic, antipyretic, immunomodulatory, and antithrombotic activities which are of great benefit in the control of associated inflammatory cytokine storm and disseminated intravascular coagulation in COVID-19 patients. In conclusion, the described biological activities of olive leaves alongside their biosafety, availability, and low price make them a potential candidate drug or supplement to control COVID-19 infection and are recommended for clinical investigation.

4.
Molecules ; 26(9)2021 May 01.
Article in English | MEDLINE | ID: covidwho-1224074

ABSTRACT

SARS CoV-2 pandemic is still considered a global health disaster, and newly emerged variants keep growing. A number of promising vaccines have been recently developed as a protective measure; however, cost-effective treatments are also of great importance to support this critical situation. Previously, betulinic acid has shown promising antiviral activity against SARS CoV via targeting its main protease. Herein, we investigated the inhibitory potential of this compound together with three other triterpene congeners (i.e., ursolic acid, maslinic acid, and betulin) derived from olive leaves against the viral main protease (Mpro) of the currently widespread SARS CoV-2. Interestingly, betulinic, ursolic, and maslinic acids showed significant inhibitory activity (IC50 = 3.22-14.55 µM), while betulin was far less active (IC50 = 89.67 µM). A comprehensive in-silico analysis (i.e., ensemble docking, molecular dynamic simulation, and binding-free energy calculation) was then performed to describe the binding mode of these compounds with the enzyme catalytic active site and determine the main essential structural features required for their inhibitory activity. Results presented in this communication indicated that this class of compounds could be considered as a promising lead scaffold for developing cost-effective anti-SARS CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Triterpenes/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Olea/chemistry , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triterpenes/chemistry , Betulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL